

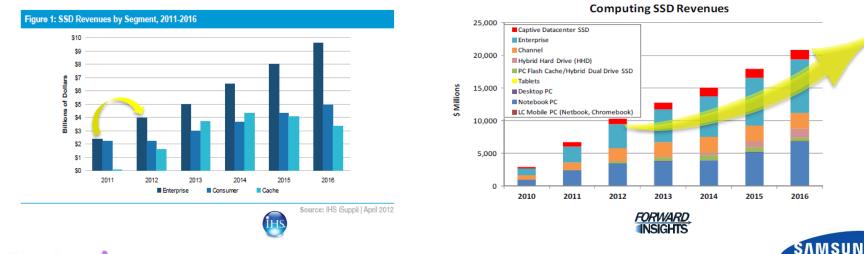
SSD Weather Channel

2012. Oct

S/W Development Team Memory Division SAMSUNG ELECTRONICS Co., LTD

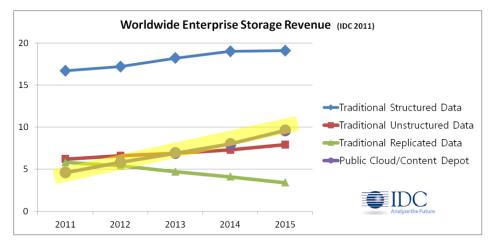
"Flash" the Server SSD Market

50 most frequent words in Flash Memory Summit 2010-2012

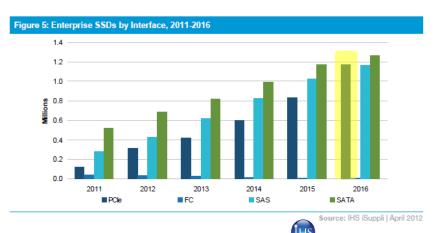


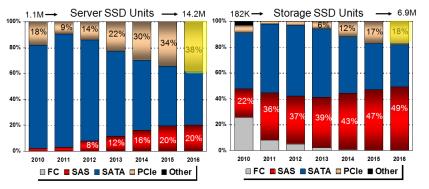
< Flash Memory Summit 2010 >

data block pertormancesystem latencu mk cost ecc sata drive technology controlle nand architecture hdd enterpi cache IODS design Dowel read application capacitu nterface


< Flash Memory Summit 2012 >

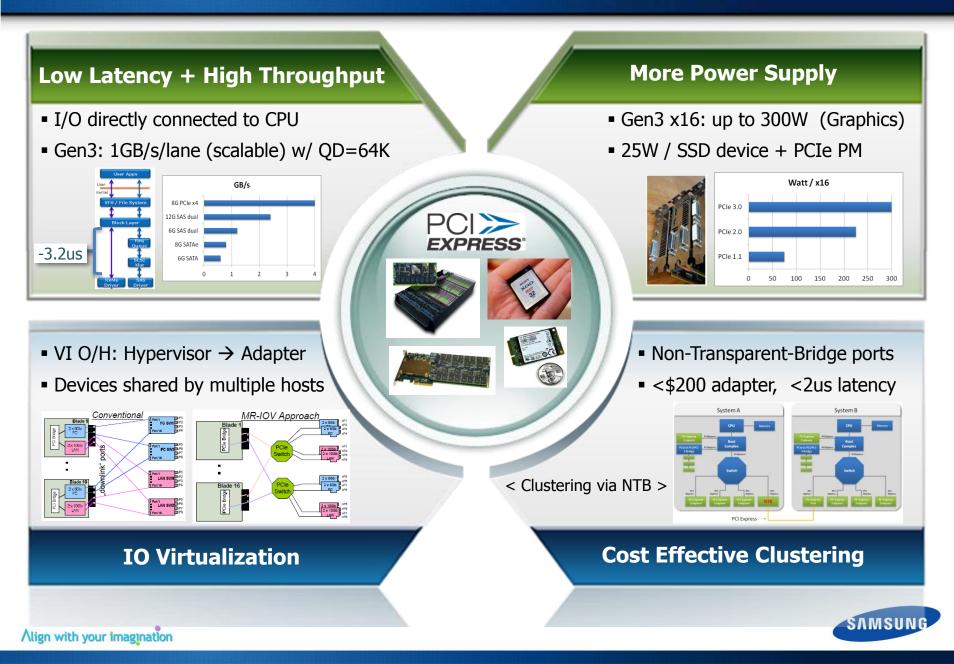
Enterprise SSD surpassing client SSD in revenue by far


Market Trends of Enterprise Storage


Public cloud/contents depot explodes by 58% (CAGR) in capacity

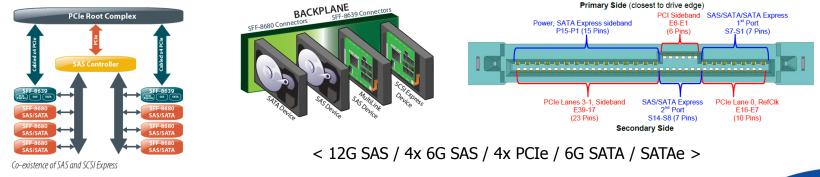
PCI Express adoption grows up to 1/3 by 2016

• SATA (server SSD) & SAS (storage SSD) still dominant in enterprise market


Graphs Show % of Enterprise SSD Shipments by Interface in Unit

Gartner

Why PCI Express for Enterprise Storage?


Multiple Standards for PCIe SSD

Align with your imagination

■ Three major standards over PCIe: SATAe \rightarrow NVMe \rightarrow SCSIe

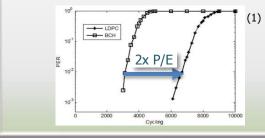
	NVM EXPRESS	SCSI <>>> EXPRESS	EXPRESS
Primary Target	Enterprise Server SSD	Enterprise Storage SSD	Client/Hybrid SSD
Command Interface	NVMe	SCSI (SOP & PQI)	ATA (AHCI) / NVMe
Form Factor	2.5" / SIOM	2.5" / Edge Card	2.5" / 1.8" / mSATA
Key Drivers	Intel, Dell	HP	Intel
Standardization	NVMe Group	T10 & STA	SATA-IO
First SSD Products	2012	2013	2013
Revision	v1.0d Under standardization SATA		SATA rev3.2

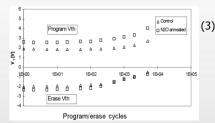
Express Bay (SFF-8639) supports multiple standard devices ('13)

Align with your imagination

Cloud SSD has distinctive requirements on Endurance/Cost

Category	Client SSD	Cloud SSD	Enterprise SSD
Price	Low	Low	High
Retention	>1 Year	<1 Month	>1 Year
P/E cycles	>3K (hard limit)	>10K (soft limit)	>30K
Power	Limited	Always On	Always On
Та	< 70 ℃	45~50 ℃	60∼70 ℃
Capacity	IDEMA(2 ⁿ GB)	OverProvisioning	More OverProvisioning
Performance	Response Critical	Endurance Negotiable	Throughput Critical
Recovery	Meta-SPOR	Data-SPOR	Data-SPOR
Power backup	Ceramic cap (~us)	Tantal cap (~ms)	Super cap (~s)


To maximize endurance w/ low-cost solution \rightarrow S/W & device engineering

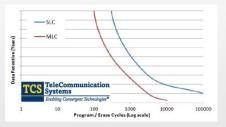

H/W Ideas for Cloud SSD

Controller IP → Endurance↑

- Enhanced ECC or LDPC
- Chip-level RAID

- Operating voltage control
- Lower temperature \rightarrow more P/E

* Cloud SSD Priority1. Cost2. Endurance


. Performance

Component → Cost↓

- MLC/TLC, not SLC/eMLC, even 3D?
- Tantal cap, not Supercap

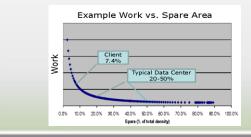
Gate First			Gate Last	(2)
	Toshiba/P-BICS	Hynix DC-SF	Samsung/TCAT	(2)
Type of 3D NAND	E Adacase (d. V.80)	Cased 2,07 Total And Cased 2,0	A neg et # 182 200	
Transistor	Gate all around; Salicided Poly Si gate	Gate all around; Salicided Poly Si gate	Gate all around; Damascene metal gate	
Storage	Charge trap	Floating gate	Charge trap	

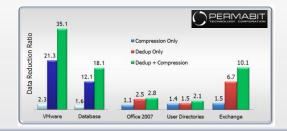
- Wear-level index
- Less retention \rightarrow more P/E

Flash Operation → Endurance↑

- (1) Xueqiang Wang, Flash Memories, ISBN: 978-953-307-272-2
- (2) Seaung Suk Lee, Emerging Challenges in NAND Flash Technology, Hynix Semiconductor Inc., Flash Memory Summit 2011, Aug 2011
- (3) Paolo Pavan, Flash Memory Cells An Overview, Proceedings of the IEEE, Vol. 85, No. 8, Aug 1997

Align with your imagination

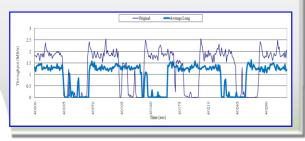

Flash Feature \rightarrow Endurance \uparrow


S/W Ideas for Cloud SSD

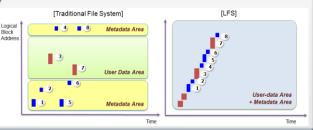
Capacity↓ → Endurance↑

- Over-provisioning: Client<8%, Server>28%
- SLC mode only: Lifetime multiplied

- De-duplication + Compression
- Hot/Cold Separation



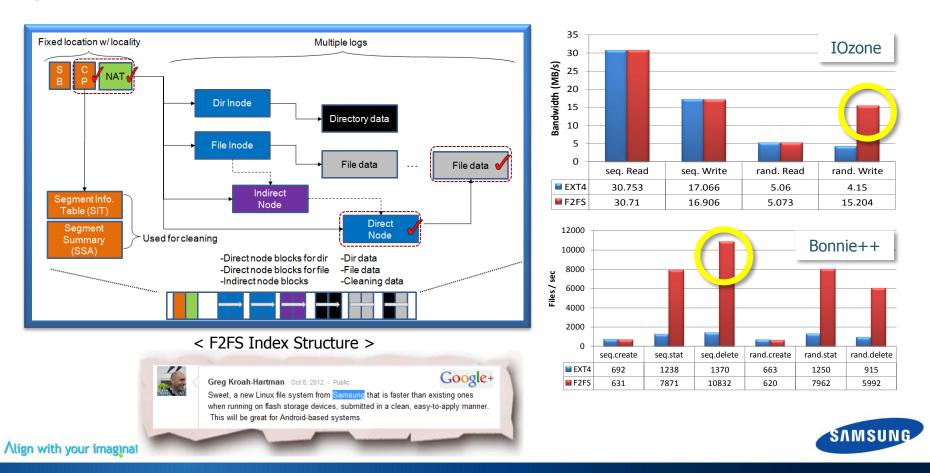
FW Algorithm → **Endurance**↑


* Cloud SSD Priority
1. Cost
2. Endurance
3. Performance

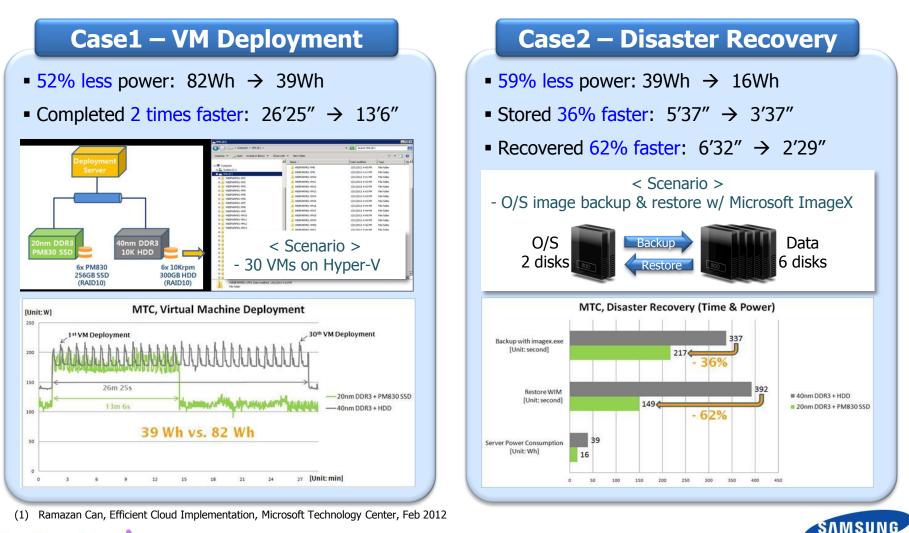
Performance $\downarrow \rightarrow$ **Endurance** \uparrow

- Dynamic throttling by wear & temperature
- Recovery-period: >3 days $\rightarrow \frac{1}{2}$ RawBER

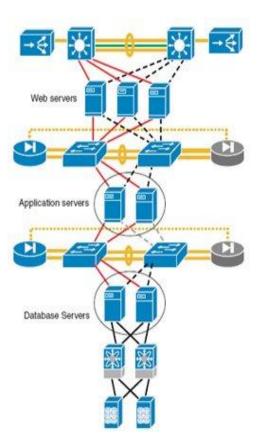
- Log-structured filesystem
- Automatic storage tiering


OS Algorithm \rightarrow Endurance \uparrow

Flash-Friendly File System (F2FS)


Samsung has released F2FS for flash storage to Linux open-source group

- Wandering tree problem mitigated by NAT(Node Address Table)
- Cleaning O/H reduced by background cleaning, hot/cold separation, adaptive logging
- Can be configured by FTL-optimized parameters such as mapping unit
- Compared with ext4 in FS benchmarks, almost sequential-like random write performance


Cloud Implementation w/ Samsung SSD

- Joint experiments w/ Microsoft Technology Center (Feb `12) (1)
 - (DDR3 20nm 8GB + PM830 SATA SSD) vs (DDR3 40nm 8GB + 10Krpm SAS HDD)

Tiered Data Center Architecture

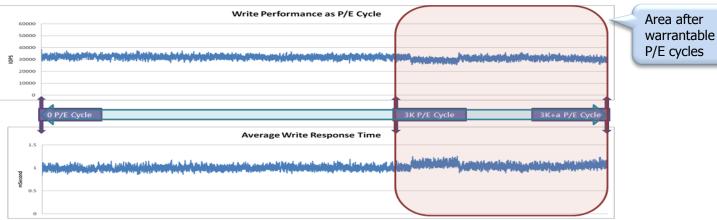
- SSD solution: Front-end boot drives or back-end high-tier storage/cache
- Virtualization will increase SSD adoption even more in data center

< Source: Cisco Systems >

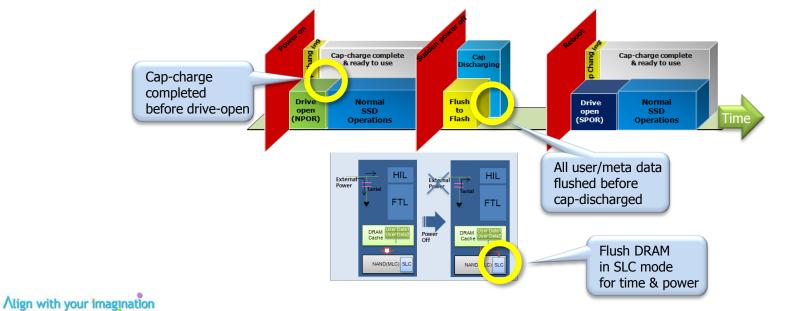
Category	CPU Load	DRAM Usage	Storage Load	Major Solution	Access Pattern	SSD Storage
Web Server	Low	Medium	Low	VM Web	<mark>Seq</mark> Write Ran Read	Boot MLC
Application Server	Medium	Medium	Low	VM App (WAS)	<mark>Seq</mark> Write Seq Read Ran Read	Boot MLC
Database Server	High	High	Medium	HPC Cache DBMS	Seq Write Ran Read	SATA eMLC (PCIe)
Storage Server	Low	Medium	High	Tiering	Ran Write Ran Read	SAS SLC/ eMLC

Flash Storage Category by Location

- Tier-1 storage is being replaced by hot-pluggable all-flash array
- Cache S/W becomes more important in tiered/virtualized storage systems

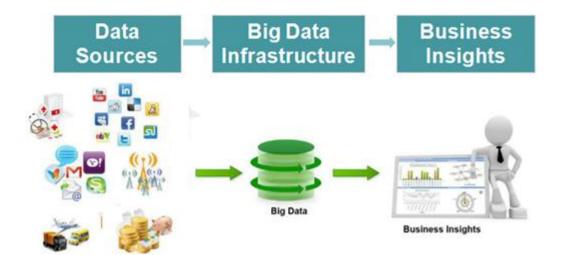


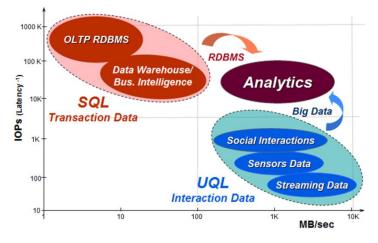
Category	Direct Attached	Host-Based Caching	Array-Based Caching	Array-Based Tiering	All SSD Array
	•FusionIO -ioDrive	•FusionIO -ioTurbine	•NetApp -FlashCache	•HP -3PAR	•ViolinMemory -3000/6000 series
Vendor -Product	•Virident -FlashMAX •LSI -WarpDrive	•Adaptec -MaxCache •Marvell -DragonFly	•EMC -FASTCache	•EMC -Compellent	•SkyEra -SkyHawk
Pros	•Best performance	•Low latency	•Good for hot data	Automatic tieringCapacity+availability	•Best IOPS/\$ •Less space/power
Cons	Worst costLimited capacityNo HA features	•Data integrity •More irregular performance	•Worse endurance •Irregular performance	•Endurance issue •Performance O/H •Complex architecture	•Low GB/\$ •Cloud scaling

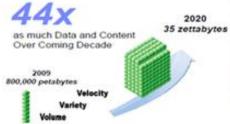


Samsung SSD for Data Center

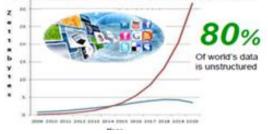
Consistent performance and response time is another key feature (QoS)


All transferred data is protected by new F/W algorithm even at power loss



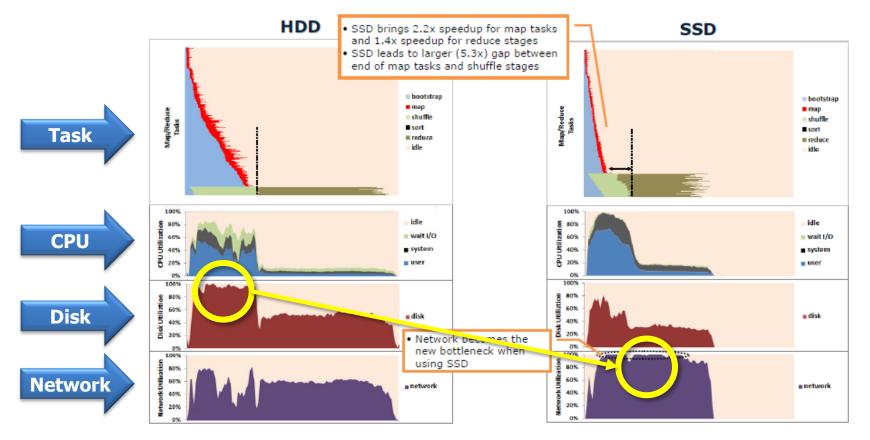

Big Data Infrastructure Galore

Huge & complex data sets, impossible to process on traditional DBMS
 Big data analytics will need real-time distributed storage systems


Information is at the center of New Wave of opportunity

Majority of data growth is being driven by unstructured data and billions of large objects

80% of world's data is unstructured driven by rise in Mobility devices, collaboration machine generated data.



Bottlenecks in Big Data Processing

Balanced I/O subsystem (H/W + S/W) is critical in big data processing
 With SSD deployment, network infra & S/W stack should evolve as well

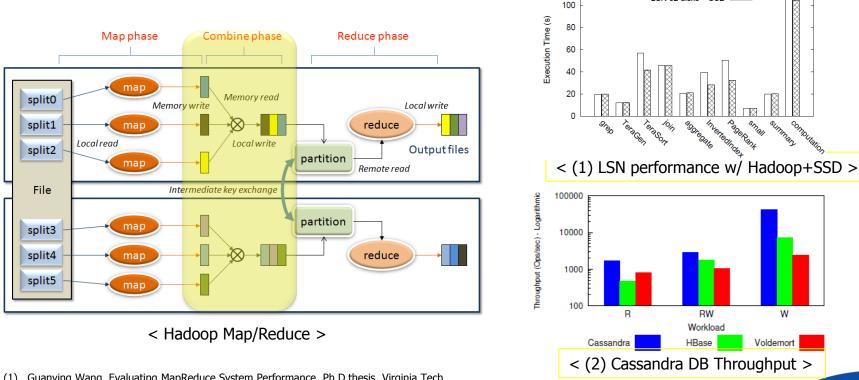
HDD vs. SSD for Hadoop Sort

* SOURCE : Jinquan Dai (Intel), "Performance, Utilization and Power Characterization of Hadoop Clusters using HiBench", Hadoop in China 2010

SAMSUN

SSD for Hadoop System

Hadoop performance issues still being improved (ex) Hadoop-2.0, CDH, Cassandra


- No failover mechanism, low parallelism, imbalanced namenode, FIFO scheduling, etc.
- Shuffle/merge phase generates intensive random writes \rightarrow SSD preferable (1)

120

LSN 32 disks 🖂 I SN 32 disks + SSD

SAMSUNG

- Optimization in other Hadoop layers can give more chances to SSD (2)
 - (ex) Cassandra no locking, log-structured, highly parallel, compression

Guanying Wang, Evaluating MapReduce System Performance, Ph.D thesis, Virginia Tech.

(2) Tilmann Rabl, Solving Big Data Challenges for Enterprise Application Performance Management, Proceedings of VLDB Endowment, Vol.5, No.12, Aug 2012 Align with your imagination

- Big data / Cloud computing is opening paradigm shift in Flash Storage, but system-level optimization leaves a lot to be desired.
- Enterprise storage I/F is converging on PCIe, but storage industry is still much based on customized tiered architecture.
- Cloud storage has distinctive requirements: Cost > Endurance > Latency, but cost-endurance trade-off delays adoption of all-flash storage.

Align with your imagination

Thank you

